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Abstract. We investigate the Peierls transition in finite chains by exact (Lanczos) diagonalization and
within a seminumerical method based on the factorization of the electron-phonon wave function (Adiabatic
Ansatz, AA). AA can be applied for mesoscopic chains up to micrometer sizes and its reliability can be
checked self-consistently. Our study demonstrates the important role played for finite systems by the
tunneling in the double well potential. The chains are dimerized only if their size N exceeds a critical
value Nc which increases with increasing phonon frequency. Quantum phonon fluctuations yield a broad
transition region. This smooth Peierls transition contrasts not only to the sharp mean field transition,
but also with the sharp RPA soft mode instability, although RPA partially accounts for quantum phonon
fluctuations. For weak coupling the dimerization disappears below micrometer sizes; therefore, this effect
could be detected experimentally in mesoscopic systems.

PACS. 63.22.+m Phonons in low-dimensional structures and small particles – 63.20.-e Phonons in crystal
lattices – 71.45.Lr Charge-density-wave systems

1 Introduction

Although a variety of mesoscopic systems attract an
increasing interest at present [1], experimental studies
on quasi-one-dimensional materials exhibiting a Peierls-
CDW transition are practically absent so far (CDW:
Charge Density Wave). The only exception we know is an
investigation on blue bronzes [2], where the strong size-
dependence of the electronic gap we have recently pre-
dicted [3] seems to be confirmed, and several other in-
triguing features were observed. In the attempt to fill the
gap between the conventional fields of solid state physics
and quantum chemistry of molecules the understanding
of mesoscopic Peierls-CDW systems is particularly impor-
tant. Theoretically, it is necessary to develop a method
suitable for such systems. In infinite solids the Mean-Field
(MF) approach often represents a useful approximation to
identify ground state orderings. Treatments beyond MF
include quantum phonon fluctuations in one-dimensional
electron-phonon models within approximate many-body
techniques, e.g. one-loop expansions [4] or variational an-
sätze [5]. None of these methods is appropriate to study
structural changes in mesoscopic systems. If they predict
a structural transformation, it is always sharp. This pre-
diction is unphysical in finite systems. On the other side,
exact treatments by means of the Monte-Carlo method [6]
and numerical diagonalization [3,7] are possible only for
small chains. For strong couplings, exact results obtained
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on small chains can easily be extrapolated for infinite sys-
tems.

For the presently considered Peierls chain, the strong
coupling limit is less interesting since the fast approach
to the thermodynamical limit masks specific properties of
mesoscopic systems. Throughout this paper, emphasis is
on weaker couplings when the quantum fluctuations play
an important part and the thermodynamical limit is ap-
proached sufficiently slowly. This has been demonstrated
by our recent study of mesoscopic chains (N ∼ 100−1000)
[3]. There, we developed an approximate method based on
the full numerical diagonalization in the Hilbert subspace
of wave functions expressed as a product of electronic and
phonon wave functions. This will be referred to as the Adi-
abatic Ansatz (AA), avoiding an ambiguous “adiabatic”
name used for technically inequivalent approximations.
The advantage of AA is considerable, particularly when
electron-electron interactions can be neglected. Requiring
both small computer memory and computing time, it can
be applied up to mesoscopic sizes. For periodic chains with
N = 4n (n is an integer) we showed that AA is reliable
in parameter regions well beyond the textbook claim on
“adiabatic” approximations and its accuracy can be tested
by calculations done within AA [3].

We report in this paper detailed results on ground
state properties of finite Peierls chains at half filling. Sev-
eral more recent studies on Hubbard models [8] rediscov-
ered a fact known since long in chemistry [9]: periodic
chains with N = 4n + 2 sites have properties that differ
from those with N = 4n. We have also found a difference
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between the cases N = 4n and N = 4n + 2 when con-
sidering the lattice motion of Peierls periodic chains. It is
due to the fact that the lowest excitation energy for free
electrons is zero in the former case but finite (4t sin(π/N),
t — hopping integral) in the latter. In this paper we shall
restrict ourselves to periodic chains with N = 4n+2 sites.
The following could be mentioned to motivate this choice.
Essential for the aforementioned difference is the gap at
the Fermi level of free electrons. An on-site electron repul-
sion yields a finite gap at the Fermi level in both cases.
This makes the periodic chains with N = 4n sites resem-
bling those with N = 4n+ 2 [8]. One could also mention
that 4n-site rings are rather exotic in molecular physics.

The main physical result of this paper is to demon-
strate why and how the Peierls transition in finite chains
qualitatively differs from that in infinite chains. We find
that only systems that are large enough are dimerized;
smaller ones are normal, and the transition between nor-
mal and dimerized regimes is smooth. Even at relatively
small phonon frequencies the critical size required for
dimerization is considerable larger than the MF estimate
because of quantum phonon fluctuations. For electron-
phonon couplings that are relatively weak, the critical
sizes fall in the micrometer range. Therefore, this effect
could be experimentally detected in mesoscopic systems.
So, with the present study an answer can be given to a
fundamental question: how small can a dimerized system
be? To the best of authors’ knowledge, neither the answer
nor the question could be found in the literature. Long
ago, a similar question has been addressed for supercon-
ductors[10] and for bond alternating cyclic polyenes (an-
nulenes) [9].

The main technical result of the present work is to show
that AA represents a useful method for studying periodic
chains with N = 4n+2. This is a nontrivial generalization
of the similar result of reference [3] for periodic chains with
N = 4n. A separate check of the AA method is necessary
for N = 4n + 2, because the adiabatic potential curves
have an appearance that differs from those for N = 4n. To
do this we shall use the direct comparison with the exact
(Lanczos) diagonalization for small chains and examine
diagonal corrections [3] for mesoscopic ones. Besides, the
present study provides an explanation why conventional
many-body theories have a very limited applicability to
finite dimerized systems.

The remaining part of the paper is organized as fol-
lows. The model is defined in Section 2 and the analytical
methods are presented in Section 3. The methods of nu-
merical diagonalization are exposed in Section 4. Results
for small chains, obtained by exact diagonalization and
within AA, on the ground state as well as lowest lattice
excitations are reported in Section 5. Section 6 is devoted
to mesoscopic systems. Section 7 summarizes the results.

2 Model

We shall investigate periodic chains with N = 4n+ 2 sites
and N spin-1/2 electrons. By setting the lattice constant
to unity, the Fermi wave vector is given by kF = π/2. The

chosen half-filling case is of physical interest and simplifies
the numerical effort: there is a single +2kF -phonon mode
in this problem (4kF = 2π). The model Hamiltonian has
the form:

H = Hel +H0
ph;

H0
ph = Ω0a

†a =
Ω0

2

(
Q−

∂

∂Q

)(
Q+

∂

∂Q

)
,

Hel = H0
el +Hel−ph =

∑
s,p

[
εp

(
c†1,p,sc1,p,s − c

†
2,p,sc2,p,s

)
+ gQ

√
2/N

(
c†1,p,sc2,p,s + c†2,p,sc1,p,s

)]
,

(1)

where label 1 (2) refers to right (left)-moving electrons,
εp = 2t sin(2πp/N), a (a†) is the annihilation (creation)
operator of the 2kF -phonon of frequency Ω0, and Q =
(a+ a†)/

√
2. The electron-phonon coupling strength used

below is λ = 2g2/(πtΩ0). In all p-summations p runs over
the set of half-integers −N/4, · · · , N/4−1. The transfor-
mation Q → −Q and, e.g. cj,p,s → (−1)jcj,p,s (j = 1, 2),
leaves the Hamiltonian (1) invariant.

3 Analytical methods

Problems similar to (1) have been often solved by us-
ing various approximations which exploit the difference
between electronic and ionic inertia and are generically
called “adiabatic”. The most simple of them is to consider
a frozen classical lattice, i.e. H0

ph ' Vph(Q) ≡ Ω0Q
2/2.

The corresponding wave functions and energies depend
parametrically on Q and can immediately be found, be-
cause equations (1) now becomes diagonalizable:

HA(Q) = Hel + Vph(Q)

=
∑
p,s

ωp(Q)
(
c̃†2,p,sc̃2,p,s − c̃

†
1,p,sc̃1,p,s

)
+Ω0Q

2/2.

(2)

Here c̃1,p,s = upc1,p,s − vpc2,p,s, c̃2,p,s = vpc1,p,s +

upc2,p,s, (up, vp) =
√

(1± εp/ωp)/2, ωp =
√
ε2p +∆2 and

∆ = g|Q|
√

2/N . The picture thus emerging is that of
a system (the well-known Peierls semiconductor) with
two electronic bands ±ωp(Q) [11]. In the ground state,
the lower (upper) band is completely occupied (empty):

|Φ0(Q)〉 =
∏
ps c̃
†
1,p,s|0〉 (|0〉 — vacuum). By minimizing

the corresponding adiabatic potential,

V0(Q) ≡ 〈Φ0(Q)|HA(Q)|Φ0(Q)〉

= −2
∑
p

ωp(Q) +Ω0Q
2/2,

one gets ± Q = QMF (≥ 0). The MF gap 2∆MF =

2gQMF

√
2/N ≈ 16t exp(−1/λ) is different from the elec-

tronic gap 2[4t2 sin2(π/N)+∆2
MF ]1/2 because of the finite
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Fig. 1. The adiabatic potential V0(Q) (in arbitrary units) and
the lowest phononic eigenstates ξ0,1,2(Q) computed within AA
in the ground electronic state for 6-site chains.

gap of the free electron spectrum. A nonvanishing distor-
tion (QMF > 0) occurs only above the critical coupling
λMF
c given by: N/λMF

c = 2πt
∑
p 1/|εp| [12]. Adiabatic

curves V0(Q) are shown in Figures 1. In the dimerized
chain (λ > λMF

c ), the ions are displaced from their origi-
nal positions l by (−1)lQMF (l is an integer).

The crudest way to incorporate the phonon dynam-
ics is to factorize the total wave function |ΨCAA,±〉 =

|Φ0(±QMF )〉|ξ̃± 〉 using the electronic wave function
|Φ0(±QMF )〉 at the MF geometry. |ΦCAA,± 〉 is an eigen-
state of the MF Hamiltonian HA(±QMF ). In the spirit
of the previous nomenclature [13], we shall call this the
Crude Adiabatic Ansatz (CAA). In the CAA Hilbert sub-
space, the original Hamiltonian (1) is equivalent to:

HCAA(±QMF ) = HA(±QMF ) +Ω0b
†b,

where b = a ∓ QMF /
√

2 corresponds to phonons in

the dimerized lattice. |ξ̃± 〉 describes harmonic oscillations
around ±QMF with the bare frequency Ω0.

A renormalization of the phonon frequency Ω can be
obtained only by retaining the quantum electron-phonon
interaction. Within the Random Phase Approximation

(RPA) in the dimerized state (λ > λMF
c ) one gets:

Ω2

λΩ2
0

=
2πt

N

∑
p

1√
ε2p +∆2

MF

∆2
MF −Ω

2/4

ε2p +∆2
MF −Ω

2/4

≡
1

λ
+Π(Ω). (3)

In the normal state (λ < λMF
c ), the above polarization

should be replaced by:

ΠN (Ω) = −
2πt

N

∑
p

|εp|

ε2p −Ω
2/4
· (4)

4 Numerical methods

4.1 Adiabatic Ansatz (AA)

The electronic and phononic problems can be sep-
arated if the total wave function is factorized,

|Ψδν 〉 = |Φδ(Q)〉|ξδν〉. Here, |Φδ(Q)〉 =
∏
p,s c̃

†
jp,s,p,s

|0〉

(jp,s = 1, 2) are eigenstates of the Hamiltonian (2)
describing noninteracting quasi-electrons at fixed lattice
geometry Q. Each |Φδ(Q)〉 generates an adiabatic po-
tential Vδ(Q) = 〈Φδ(Q)|HA(Q)|Φδ(Q)〉. By neglecting
the nonadiabatic coupling matrix elements Γδ,δ′ ≡
2〈Φδ(Q)|∂/∂Q|Φδ′(Q)〉∂/∂Q + 〈Φδ(Q)|∂2/∂Q2|Φδ′(Q)〉
[14] one gets an approximate phononic eigenvalue problem
(AA without diagonal corrections):[

Vδ(Q) +Ω0(a†a−Q2/2)
]
|ξδν〉 = Eδ,ν |ξ

δ
ν〉. (5)

Equation (5) is nontrivial but can be solved numerically in
the Q-representation. The discrete eigenvalues of Q rep-
resent the counterpart of the discrete points that should
be used by numerical quadratures in the occupation num-
ber representation [3]. Within AA, the phonon dynamics
is determined by the adiabatic potential Vδ(Q).

The AA quantum motion occurs on isolated adiabatic
surfaces but, in reality, a coupling between various surfaces
exists (Γδ,δ′ 6= 0). Γδ,δ′ becomes large or singular only
when adiabatic surfaces come close or touch each other
[14]. For small N and Ω0

<
∼ t, AA is accurate: the mini-

mum energy separation 4t sin(π/N) of V0(Q) from other
adiabatic surfaces yields Γδ,δ′ ' 0. The direct comparison
with exact results (Sect. 5) confirms this conclusion. This
argument holds no more for mesoscopic systems, because
the energy separation becomes smaller than Ω0. There,
however, one can show that the diagonal elements of Γ
are larger than the off-diagonal ones [19]. Therefore, the
parameter ranges beyond which AA breaks down can be
determined self-consistently from the point where the di-
agonal corrections [3] computed within AA become large.

If a distortion exists, the AA quantum motion proceeds
in the double well potential V0(Q) = V0(−Q). Since it is
one dimensional, the AA ground state is nondegenerate.
Let us denote the three lowest eigenvalues (eigenvectors)
of equation (5) by EA, EA+Ω1,A and EA+Ω2,A (|ξ0,1,2〉),



510 The European Physical Journal B

respectively. For large λ and/or small Ω0, Ω1,A represents
a tunneling splitting; it is small and the next eigenstate is
well separated energetically (Ω2,A � Ω1,A).

In addition to the energies obtained without diago-
nal corrections and specified by A, we shall also employ
energies with diagonal corrections, specified by the sub-
script a: Ea ≡ 〈ξ0|〈Φ0(Q)|H|Φ0(Q)〉|ξ0〉 and Ea +Ωj,a ≡
〈ξj |〈Φ0(Q)|H|Φ0(Q)〉|ξj〉 (j = 1, 2). The difference be-
tween them will be used to characterize the accuracy of
AA.

4.2 Exact Lanczos diagonalization

For a fixed number of basis functions in phonon num-
ber representation (increased progressively, until reach-
ing convergence), and including all

(
2N
N

)
multielectronic

configurations, we have applied the Lanczos algorithm
to the Hamiltonian (1) to compute the exact eigenvalues
Ee < Ee +Ω1,e < Ee +Ω2,e and eigenvectors |Ge〉, |Ψ1,e〉
and |Ψ2,e〉 of the ground state and the two lowest energy
lattice excitations. If V0(Q) possesses two deep minima,
the tunnel splitting Ω1,e is small the usual method (see
Ref. [3] and references cited therein) fails to determine
Ω1,e and |Ψ1,e〉. Then, to resolve the quasi-degeneracy the
Lanczos algorithm was repeated with a starting Lanczos
vector orthogonal to |Ge〉. The lowest energy Ritz vector
|Ψ1,e〉 obtained in the second step corresponds to the eigen-
state which is quasi-degenerate with the ground state:
their energy difference Ω1,e represents the tunneling split-
ting.

5 Exact and approximate results for small
systems

We have studied in detail chains with 6 and 10 sites. Since
no notable difference between them was observed, we shall
only present results for 6-site chains, investigated in a very
broad range of parameters (0.001 < λ < 2, 0.01 < Ω0 <
20). In all numerical results we set t = 1.

5.1 Lowest energy wave functions and the smooth
Peierls transition

Conventional many-body approaches are only able to com-
pute averaged properties of a system. The methods ex-
posed in Section 4 provide the richest information on
the physics of the Peierls transition, that contained in
the wave functions. Within AA one can directly inspect
ξ(Q). The exact diagonalization allows one to get the
contribution of various lattice geometries to a certain
eigenstate |Ψ〉 by computing the probability distribution
P (Q) ≡

∑
δ |〈δ,Q|Ψ〉|

2 (δ runs over all multielectronic
configurations) [15].

MF predicts a stabilization of a twofold degenerate
dimerized state for a coupling stronger than λMF

c (= 0.382
for N = 6) and a normal state otherwise (cf. Sect. 3). Fig-
ure 1 shows how realistic the MF-description is. At the

Fig. 2. Results on the gradual Peierls transition for 6-site
chains. (a) Curves of the critical coupling λc obtained by ex-
act diagonalization (index e), within AA, MF and CAA. (b)
λ-dependence of η for Ω0 = 0.01; 0.1; 0.5; 1.0; 2.0 (increasing
upwards for large λ). Within drawing accuracy, the AA-curves
(dashed lines) can be distinguished from the exact ones (solid
lines) only for Ω0 = 1.0 (long dash) and 2.0 (short dash). The
dot-dashed curve is the CAA result for Ω0 = 2.0.

moderately small frequency Ω0 = 0.5, the differences be-
tween exact diagonalization and AA are small for all com-
puted quantities. Therefore, only AA results on ξ0,1,2(Q)
(cf. Sect. 4.1) will be presented below.

The ground state ξ0(Q) possesses a single maximum
at Q = 0 for weak coupling and two symmetric max-
ima for strong coupling. A critical coupling λc(Ω0) will
be defined by the point separating the two situations, re-
ferred to as the normal and dimerized regimes, respec-
tively. The difference between λc(Ω0) and λMF

c is an effect
of quantum phonon fluctuations: limΩ0→0 λc(Ω0) = λMF

c

(Fig. 2a). Quantum phonon fluctuations alter quantita-
tively and qualitatively the MF-CAA picture.

Unlike the CAA-picture, a notable phonon anhar-
monicity exists even in the normal regime. The stronger
the coupling, the more pronounced is the anharmonicity.
At λ = 0.2, the wave functions ξ0,1,2(Q) shown in Fig-
ure 1a do not qualitatively differ from those of a harmonic
oscillator. Several numerical values given below show
quantitative differences from those (given in parentheses)
corresponding to the CAA-harmonic oscillator. ξ0(Q) has
a FWHM-value of 2.82 (2.35) and ξ1(Q) possesses two
symmetric extrema at Q = ± 1.19 (Q = ± 0.707). The
minimum of ξ2(Q) atQ = 0 has an amplitude smaller than
the symmetric ξ2(Q)-maxima at Q = ± 1.88 (Q = ± 1.58)
by a factor 1.151 (1.146).

With increasing λ the anharmonicity becomes more
significant: ξ0,1,2(Q) become broader. For instance, at
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λc = 0.445, the FWHM of ξ0(Q) is larger than for the
CAA-harmonic oscillator by a factor 2.51.

At λ = 0.8, ξ0(Q) displays two maxima (cf. Fig. 1c)
at |Q0| = 4.640. The small difference to the MF-value
QMF = 4.646 demonstrates the small effect of quantum
phonon fluctuations in the strong coupling limit. Within
numerical accuracy either maximum is symmetric and has
a FWHM of 2.54, corresponding to 2.35 for the CAA oscil-
lations around±QMF . ξ1(Q) behaves completely different
from its counterpart of Figures 1a and b. To a very good
approximation, one can consider ξ0 and ξ1 as the sym-
metric and antisymmetric superpositions of two functions
centered on ±Q0, the counterpart of the CAA eigenvec-
tors |ξ̃± 〉, respectively. This behavior is typical for molecu-
lar systems where the tunneling occurring in the adiabatic
double well potential lifts the ground state degeneracy: the
best known example is the NH3 molecule [16]. Inspecting
the region Q < 0 (Q > 0) of Figure 1c, one can see that
ξ2(Q) has the appearance of a wave function describing
an antisymmetric superposition of two states with single
quanta describing harmonic oscillations around Q0 and
−Q0. However, important quantitative differences exist.
The maxima (±Qmax) of ξ2(Q) are closer to ±Q0 than
its minima (±Qmin): Qmax−Q0 = 0.88 and Q0−Qmin =
1.14. For CAA-harmonic oscillations both values are equal
to 0.707. The value | [maxQξ2(Q)] /| [minQξ2(Q)] = 1.010
is also different from harmonic oscillation value (1.146).
This comparison demonstrates that, even for strong cou-
pling, the physical description in terms of two CAA in-
dependent contributions of the wells at ±QMF is poorer
that one could claim from the small difference between
Q0 and QMF . Approaching the value λc from above, the
overlap between the two maxima of ξ0(Q) becomes more
pronounced and the value of ξ0(Q)|Q=0 increases gradu-
ally. All aforementioned deviations from the CAA picture
become more notable.

So, the above results demonstrate that one can essen-
tially characterize the system as normal (dimerized) for
weak (strong) coupling, but the transition between these
regimes is gradual. The very broad critical region can be
seen by inspecting (Fig. 2b) the quantity

η ≡ 〈Q4〉1/2/〈Q2〉.

At Ω0 → 0 the CAA result is exact. For λ < λMF
c one

gets η →
√

3, a value determined by zero point motion
(QMF = 0, 〈Q2〉0 = 1/2, 〈Q4〉0 = 3/4), while for λ >
λMF
c , η → 1 (QMF ∝ ∆MF /

√
Ω0 → ∞). The larger Ω0,

the stronger is the deviation of the η(λ)-curve from the
CAA result: see the curves for Ω0 = 2.0 in Figure 2b.

The critical couplings deduced exactly (defined by
means of the exact P (Q)) and within AA for N = 6 are
shown in Figure 2a. Because the transition is smooth, a
transition onset can only be defined by some suitable con-
vention. The definition of λc(Ω0) given above is a possible
one with direct reference to the ground state wave func-
tion. Another possible definition is to use the ground state
energy. The straightforward analysis reveals that the tran-
sition onset defined above is reasonably close to the point
where Ee +Ω0/2 becomes equal to the local maximum of

Fig. 3. Frequencies (Ω1,e and Ω2,e) of the two lowest lattice ex-
citations computed exactly and the dressed phonon frequency
(ΩRPA) obtained within RPA. For the chosen parameter values
(inserted), exact and AA results are indistinguishable within
drawing accuracy.

V0 at Q = 0. For Ω0 = 0.5, this occurs at λ = 0.461. On
the other side, the CAA zero point energy Ω0/2 becomes
equal to the classical energy barrier V0(Q = 0)−V0(QMF )
only at λ = 0.508. This analysis gives further insight into
the physics of the transition. Basically, the enhancement
of the critical coupling with respect to λMF

c is due to
zero point motion, which causes a tunneling among the
two minima at ±QMF . The critical coupling strength —
0.445 (AA) and 0.440 (exact diagonalization) at Ω0 = 0.5
— moves toward the MF value λMF

c as Ω0 → 0 (Fig. 2a).
In summary, the quantum phonon fluctuations cause

two main changes with respect to the MF predictions:
(i) the exact ground state is nondegenerate, and (ii) for
increasing coupling a gradual transition occurs from a
normal state to a dimerized one. One should empha-
size the main difference between the real ground state
and its quasidegenerate mate and the two degenerate
MF ground states in the dimerized regime. The former
could be only approximately considered as the symmet-
ric and antisymmetric combinations of the latter. In re-
ality, the two contributions cannot be separated in the
exact states. The closer to the critical point the more
pronounced is this nonseparability. We have also com-
puted the critical curve λ(Ω0) by using the wave function
|ΨCA〉 ≡ (|ΨCAA,+〉+ |ΨCAA,−〉)/

√
2 as an approximation

for the true ground state. As seen in Figure 2a, this crude
treatment accounts only qualitatively for quantum phonon
fluctuations.

5.2 Lattice excitation energies: an alternative way
of revealing the gradual transition

The examination of the frequencies of lattice excitations,
to which this section is devoted, will offer an alternative
approach to the smooth transition. Within RPA (cf. Eqs.
(3, 4)), the phonon frequency gradually decreases from Ω0

to 0, as λ increases from 0 to λMF
c (Fig. 3). This agrees

with the idea that a soft mode instability of the normal
state drives the system towards a dimerized state (e.g.
Ref. [11]). In the dimerized state, Ω 6= 0: the phasons of a
commensurate CDW are pinned [11].
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In Figure 3, the RPA-frequencies can be compared
with the exact frequencies Ω1,e and Ω2,e (cf. Sect. 4.2).
ΩRPA represents a good approximation for Ω1,e in the
weak coupling limit (λ� λMF

c ), while it becomes close to
Ω2,e in the strong coupling limit (λ� λMF

c ). The reasons
for this behavior will be clarified below.

For λ sufficiently smaller than λMF
c and for low enough

Ω0, the exact results agree with the physics emerging from
the MF-RPA picture. The curves Ω1,e and Ω2,e/2, being
very close to each other and also to the ΩRPA-curve, show
that the lattice excitations are normal, almost harmonic
phonons (Fig. 3) and support the conclusion of Section 5.1.

Increasing λ toward λMF
c , the difference between Ω1,e

and ΩRPA becomes more and more pronounced. The Ω1,e-
curve exhibits an overall softening. Nevertheless, at vari-
ance with the complete phonon softening of the ΩRPA-
curve (ΩRPA(λMF

c ) = 0), this softening is never complete
for finite Ω0. For λ > λMF

c , Ω1,e ∝ exp(−23.5Ω−0.7
0 λ)

for 0.01 < Ω0 < 1. Ω2,e behaves differently for small and
large λ (Fig. 3). For small λ, Ω2,e becomes softer with
increasing λ. Simultaneously, the anharmonicity becomes
progressively stronger: the curves Ω1,e and Ω2,e/2 grad-
ually depart from each other. Besides, the anharmonic-
ity increases with increasing Ω0. By further increasing λ,
an upturn appears in the Ω2,e-curve at a certain value
λ = λu (= 0.50 at Ω0 = 0.5). Unlike its Ω0-independent
MF-RPA counterpart λMF

c , λu increases with Ω0. For

0.01 < Ω0 < 1, we found λu = λMF
c + 0.19Ω

2/3
0 and

Ω2,e|λ=λu = 0.58Ω
4/3
0 = 16.6(λu − λMF

c )2.
Increasing λ beyond λu, Ω1,e approaches 0, whereas

Ω2,e increases monotonically (Fig. 3) and behaves qual-
itatively similar to ΩRPA. The MF-RPA results can be
expressed as follows. The tunneling between the wells at
+QMF and −QMF requires no energy because the corre-
sponding states are degenerate, while the energy cost for a
proper lattice excitation is ΩRPA. This picture represents
a reasonable approximation (Ω1,e ≈ 0, Ω2,e ≈ ΩRPA) only
for a coupling sufficiently stronger than λMF

c and low Ω0.
In summary, the RPA results have physical sense either

in the weak or strong coupling limit but are meaningless
in the critical region. This reveals the limitation of the de-
scription based on two independent states associated with
the two wells of V0(Q) already discussed in Section 5.1.
λu(Ω0) could alternatively define the dimerization onset.

5.3 Validity of AA description

The exact and AA results almost coincide within the draw-
ing accuracy of Figures 1 and 3 even at relatively large
Ω0. The largest differences occur in the critical region. Al-
though the difference between exact and AA results for λc
becomes larger at higher frequencies (Fig. 2a) it remains
significantly smaller than their difference from λMF

c . AA
remains reliable up to rather high Ω0-values (Figs. 2a, b).

For subsequent applications to mesoscopic systems,
it is highly desirable to assess the AA validity self-
consistently rather than comparing AA and exact results.

Fig. 4. Condensation energy per site computed exactly (εe)
and within AA without (εA) and with (εa) diagonal correction
and within MF (εMF ). Note the logarithmic scale.

To this aim, we shall examine now the AA diagonal cor-
rections (cf. Sect. 4.1 and Ref. [3]). For N = 6, we have
computed the condensation energy per site both exactly
(εe) and within AA, in the latter case without (εA) and
with (εa) diagonal corrections [Nεµ ≡ V0(Q)|Q=0 − Eµ;
µ = e,A, a]. Figure 4a illustrates a typical situation. For
couplings stronger than a certain value (that increases
with Ω0), AA is excellent: the stronger the coupling, the
better the AA description. The εe-, εA- and εa-curves
progressively depart from each other [17] for decreasing
λ. However, |εe − εa| < |εA − εa|, indicating that the
AA wave functions are accurate even for couplings weaker
than those suggested by comparing εA and εa. This con-
clusion is also supported by comparing exact and AA val-
ues of Ω1,2 and η (cf. Fig. 3 and 2b). Thus, one can state
that AA describes sufficiently reliable the critical region
even at rather high frequencies Ω0.

6 Mesoscopic systems

In this section we shall present results on the Peierls tran-
sition in systems with variable sizes N . Expressing alter-
natively a MF-result of Section 3, only chains larger than a
certain critical size NMF

c (λ) are dimerized. If the coupling
is reasonably weak, the Peierls transition is strongly size
dependent in mesoscopic systems even at the MF level,
see Figure 5a.

The AA results collected in Figures 5 and 6 show that
the quantum phonon fluctuations are quite important at
small coupling. The critical size Nc for dimerization onset
as discussed in Section 5.1 is much larger than NMF

c even
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Fig. 5. (a) λ-dependence of the critical size Nc for dimerization
at Ω0 = 0.1 predicted within MF, AA and CAA. The dot-
dashed line was computed by imposing 2t sin(π/N) = ∆MF .
(b, c) The smooth Peierls transition as illustrated by η- and
〈Q2〉-curves. (Nc = 112 is marked by vertical dotted lines.)

for small Ω0 (Nc = 112, NMF
c = 66 for Ω0 ∼ 0.1t, see

Fig. 5a).

The transition region is very broad. This is illustrated
by the parameter η which interpolates smoothly between
the values

√
3 and 1 characterizing ideal normal and

dimerized states, respectively (Fig. 5b). Figure 5c illus-
trates the same behavior: 〈Q2〉 evolves slowly from the
value 0.5 expected for normal phonons to a value pro-
portional to N , as expected for condensed phonons. The
difference between AA and CAA results is very clear, par-
ticularly in the transition region. The smooth variation
displayed by the AA curves indicates that a well defined
dimerized state should be expected at sizes significantly
larger than Nc. This fact makes the difference from the
MF picture even more important.

AA also allows to monitor the changes occurring with
increasing size by inspecting the wave functions. At λ =
0.2 the chain with 66 sites is extremely close to the MF
critical point (λMF

c = 0.1997). The two minima of V0(Q)
are very shallow and, therefore, the ground state wave

Fig. 6. The same as in Figure 1, for λ = 0.2 and Ω0 = 0.1 and
three different N-values.

function ξ0(Q) displays a single maximum (Fig. 6a), i.e.
it is of normal type. At the same λ, two symmetric max-
ima are hardly visible in ξ0(Q) for N = 126 (>∼Nc = 112)
(Fig. 6b). With increasing size, the two maxima become
more and more well separated, as seen in Figure 6c for
N = 510. Figures 1 and 6 show two ways in which a sys-
tem can be driven from a normal state towards a dimerized
one: by increasing the coupling λ or the size N . The mod-
ifications do not only refer to the ground state ξ0(Q): the
lowest excited states ξ1,2(Q) are also changed accordingly.

To check the accuracy of the AA results for mesoscopic
systems we have computed the AA diagonal corrections.
They behave similar to those for small systems (cf. Figs. 4a
and b). We have also estimated how inaccurate the AA
prediction on the critical point could be. The study on
6-site chains turned out to be helpful to this aim, too. For
N = 6 and variousΩ0 we have inspected the values λAu and
λau at the minimum of Ω2,A(λ) and Ω2,a(λ) (cf. Sect. 5.2).
λAu − λau is very close to the difference between the AA
and exact values of λc. Using λAu − λau to estimate the
inaccuracy of AA, we claim an overestimation of λc−λMF

c

by at most 25% (5%) for N < 1000 (N < 100).
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7 Summary and outlook

The results on finite Peierls chains reported above mainly
comprise three aspects. First, we have developed a method
(AA) that can describe quantitatively the structural
change occurring in chains up to mesoscopic sizes. We ex-
tend the conclusion [3] obtained for chains with N = 4n:
AA is much less restrictive than textbooks usually claim
for adiabatic approximations. The AA-results are accu-
rate at least when the diagonal corrections are small. The
magnitude of the latter turned out to be more appropri-
ate for assessing self-consistently the validity of AA than
the ratio κ of the electronic gap to the phonon frequency.
Contrary to textbook wisdom, we have found that AA is
applicable even if κ ∼ 1.

Second, the quantum phonon fluctuations yield a
smooth Peierls transition in finite chains, in contrast to
the sharp MF transition. The ground state wave function
does preserve the symmetry of the original Hamiltonian.
There is no symmetry breaking in finite Peierls chains. In
infinite systems, the two states related to the deep wells
at +QMF and −QMF of the adiabatic potential are de-
generate and independent of each other. In finite chains,
the contributions of these wells cannot be separated be-
cause of the nonnegligible transmission coefficient of tun-
neling [18]. This explains why the MF and RPA methods
poorly describe the dimerization in finite chains, particu-
larly close to the dimerization onset (see Figs. 3 and 4).
They assume that the contributions of the two wells can
be separated. The closer to the critical region, the poorer
is the approximation of independent wells. In infinite sys-
tems quantum phonon fluctuations are often accounted for
by including one-loop correction to the order parameter.
We checked that this method is also poor in finite chains
[19], a fact understandable since it starts by an expan-
sion around a single minimum. For a given λ (or N), the
dimerization develops in chains with sizes (or couplings)
larger than a critical value Nc(or λc). Nc increases with
Ω0 and is significantly larger than NMF

c . The critical re-
gion is very broad; a well defined dimerization exists only
for sizes considerably larger than Nc.

Third, this effect could be observable in materials
with weak electron-phonon coupling. For λ ≈ 0.15 − 0.2
(2∆MF /t ≈ 0.02− 0.11), the Peierls dimerization of infi-
nite chains should disappear for sizes smaller than N ≈
4000−300 at Ω0/t ' 0.1. The larger Ω0 and especially (cf.
Fig. 5a) the smaller λ, the easier is the experimental obser-
vation. In addition, various interchain interactions could
enhance this effect.

We suggest two experimental techniques to study the
smooth structural change in Peierls chains, namely non-
linear optical absorption and ultrasound attenuation. The
latter could reveal the strong anharmonicity in the critical
region. The former technique can be used for directly prob-
ing the symmetry [19]. In the normal regime, temperatures
sufficiently lower than Ω1 exist, where one- and three-
photon processes can cause transitions of electrons from
the (symmetric) ground state across the Peierls gap (G),
while two-photon processes are forbidden by symmetry.
In the critical or dimerized regime, Ω1 is very small and

the first excited state is also populated. Because it is an-
tisymmetric, transitions from this state across the Peierls
gap via two-photon processes become possible. Therefore,
besides the maximum at ω ∼ G/3, a maximum of the
nonlinear absorption should progressively develop at a fre-
quency ω ∼ G/2 as one moves from the normal regime to
the dimerized one; G can be extracted from the maximum
of the linear optical absorption.

How small a superconductor can be was considered
to be a fundamental theoretical question [10]. There,
the discrete electron energy-level spectrum has been pre-
dicted to change the properties even to the point of ex-
tinguishing superconductivity altogether [10,20]. Recent
experiments on nanometer-scale metal particles seem to
confirm this expectation [20]. Existing theoretical inves-
tigations within MF predict that the superconductiv-
ity is lost when the average spacing in the discrete en-
ergy spectrum of the finite superconductor is of the or-
der of the BCS order parameter [10,20]. We have com-
puted a critical curve by imposing a similar condition
[2t sin(π/N) = ∆MF ] for the present model. These criti-
cal sizes are much smaller than those obtained both within
MF and by accounting for quantum phonon fluctuations
(Fig. 5a). Whether the notable difference is due to the
enhanced fluctuation effect in one dimension or whether
quantum fluctuations should also quantitatively change
the estimated minimum size of three-dimensional super-
conductors remains to be clarified.

In annulene C4n+2H4n+2, the Hückel approach (basi-
cally, a MF-approach to the Su-Schrieffer-Heeger (SSH)

model) predicted a minimum size 4n+2 >∼ 18−30 for bond
alternation, such that only small molecules (like benzene)
possess equivalent chemical bonds [9]. Since that approach
ignored the quantum fluctuations, the critical size could
be significantly underestimated. The AA method can be
applied to the SSH model without difficulty.

To the best of our knowledge, no experimental study
previously revealed that a minimum size is required for a
Peierls dimerization and no previous theoretical investi-
gation suggested that, because of quantum phonon fluc-
tuations, this minimum size could be large enough to be
observed in mesoscopic systems. We hope that the present
theoretical study will also stimulate a similar experimental
interest on mesoscopic Peierls systems.
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